$C_{16}H_{15}BrN_2O_3$

200 parameters	Scattering factors from
H atoms riding	International Tables for
$w = 1/[\sigma^2(F_a^2) + (0.0671P)^2$	Crystallography (Vol. C)
+ 0.3777P]	Absolute structure: Flack
where $P = (F_o^2 + 2F_c^2)/3$	(1983)
$(\Delta/\sigma)_{\rm max} < 0.001$	Flack parameter = $-0.05(5)$
$\Delta \rho_{\rm max} = 0.285 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.397 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1. Selected geometric parameters (Å, °)

	1 220 10	C1 C7	1 170 (0)
O3—C7	1.230 (8)	$C_1 = C_1$	1.470 (9)
N2-C4	1.349 (8)	C2-C3	1.371 (8)
N2-C15	1.425 (9)	C3—C4	1.385 (9)
N2-C16	1.468 (9)	C4—C5	1.412 (9)
C1-C2	1.388 (8)	C5—C6	1.343 (8)
C1-C6	1.390 (8)		
C4—N2—C15	122.0 (6)	N2-C4-C3	123.2 (6)
C4-N2-C16	120.1 (6)	N2-C4-C5	120.5 (6)
C15—N2—C16	117.6 (6)	C3-C4-C5	116.2 (6)
C2-C1-C6	116.0 (6)	C6C5C4	120.6 (6)
C2-C1-C7	124.3 (6)	C5-C6-C1	123.6 (7)
C6C1C7	119.7 (5)	O3-C7-C1	121.6 (6)
C3-C2-C1	121.2 (7)	O3—C7—C8	118.4 (6)
C2—C3—C4	122.4 (6)	C1-C7-C8	120.0 (6)
C15—N2—C4—C3	-178.7 (7)	03	4.4 (11)
C16-N2-C4-C3	-5.1(10)	C1-C7-C8-C9	-177.0 (7)
C15-N2-C4-C5	3.1 (11)	C7—C8—C9—C10	-63.2 (9)
C16-N2-C4-C5	176.7 (6)	O2-N1-C10-C11	139.7 (7)
C2-C1-C7-O3	176.2 (7)	01N1C10C11	-40.7 (10)
C6C1C7O3	-5.4 (12)	02-N1-C10-C9	- 38.0 (10)
C2-C1-C7-C8	-2.4(11)	01-N1-C10-C9	141.6 (8)
C6C1C7C8	176.0 (7)		

The title structure was solved by direct methods using *SHELXS86* (Sheldrick, 1990). Refinement was performed using *SHELXL97* (Sheldrick, 1997) using anisotropic displacement parameters for all non-H atoms and isotropic displacement parameters for the H atoms. Figures were drawn using *ZORTEP* (Zsolnai, 1994) and material for publication was prepared using *SHELXL97*. All calculations were carried out on a VAX station 4000VLC computer system.

We acknowledge support from the Australian Research Grants Scheme.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1201). Services for accessing these data are described at the back of the journal.

References

- Denison, L., Haigh, A., D'Chuna, G. & Martin, R. F. (1992). Int. J. Radiat. Biol. 61, 69-81.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Garcia, E. E. & Fryer, R. I. J. (1974). J. Heterocycl. Chem. 11, 219-221.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Zsolnai, L. (1994). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.

Acta Cryst. (1998). C54, 1306-1309

Enantiopure δ -Hydroxy- β -enamino Ketones

Mercedes Camalli,^a Augusto Pifferi^a and Gianni Palmieri^b

^a Istituto di Strutturistica Chimica-CNR, CP 10 00016 Monterotondo Stazione, Roma, Italy, and ^bDipartimento di Scienze Chimiche, Universitá degli Studi di Camerino, Via S Agostino 1, 62032 Camerino, Italy. E-mail: cam@isc.mlib. cnr.it

(Received 12 March 1996; accepted 7 July 1998)

Abstract

The absolute configurations of 2-(α -methylbenzylamino)-3-(1-hydroxy-1-methylethyl)cyclopent-1-en-1-yl phenyl ketone, C₂₃H₂₇NO₂, and 5-hydroxy-4,6,6trimethyl-3-(α -methylbenzylamino)-1-phenyl-2-hepten-1-one monohydrate, C₂₄H₃₁NO₂.H₂O, obtained by a directed enantioselective aldol condensation, have been ascertained to be (αR ,3S) and (αR ,4S,5S), respectively. While in the first cyclic δ -hydroxy- β -enamino ketone the enaminic N atom is hydrogen bonded to the carbonyl O atom, in the second acyclic compound, the N atom is hydrogen bonded to the hydroxyl group.

Comment

 δ -Hydroxy- β -enamino ketones and related compounds are important structural subunits which are present in many synthetic targets of natural origin and in key intermediates in the construction of a wide variety of heterocyclic compounds. The introduction of an alkyl side chain containing a hydroxyl function of fixed configuration at the γ -position of β -enamino ketones and derivatives represents an important synthetic goal, since the added functionality would increase the synthetic scope of these intermediates. The aldol reaction is one of the more powerful tools for the stereoselective construction of acyclic molecules (Heathcock, 1991; Franklin & Paterson, 1994). Among the most important advantages of using an imine is the ability to introduce a 'stereogenic center' via an enantiomerically pure amine, thus enabling diastereoselective control of the C-C bondforming process (Meyers et al., 1981; Enders et al., 1992; Denmark & Ares, 1988).

We have prepared two δ -hydroxy- β -enamino ketones with good stereoselectivity: 2-(α -methylbenzylamino)-3-(1-hydroxy-1-methylethyl)cyclopent-1-en-1-yl phenyl ketone, (1), and 5-hydroxy-4,6,6-trimethyl-3-(α -methylbenzylamino)-1-phenyl-2-hepten-1-one monohydrate, (2). As they have not been reported previously, it was necessary to determine their absolute configuration unequivocally by single-crystal X-ray analysis to understand the asymmetric induction mechanism.

The crystal structure of (1) contains one molecule of the δ -hydroxy- β -enamino ketone in the asymmetric unit and the crystal structure of (2) contains one molecule of the δ -hydroxy- β -enamino ketone and one molecule of water in the asymmetric unit. The absolute configurations of the δ -hydroxy- β -enamino ketones have been ascertained as $(\alpha R, 3S)$ and $(\alpha R, 4S, 5S)$ for (1) and (2), respectively [commercially available (R)-(+)- α -methylbenzylamine was used in the preparation of the compounds]. The geometry of the phenyl rings is in good agreement with the accepted values although the atoms suffer from a high degree of thermal motion. The crystal structures are stabilized by a network of hydrogen bonds involving the enaminic N(1) atom, the carbonyl O(2) atom and the hydroxyl O(1) atom. In (1), the intramolecular N(1)—H(1)···O(2) hydrogen-bonding distance is $2.639(4) \text{ Å} [\text{H}(1) \cdots \text{O}(2) = 1.81 \text{ Å}]$ while the intermolecular O(1)— $H(27) \cdots O(2^{i})$ hydrogen-bonding distance is 2.743 (3) Å $[H(27) \cdot \cdot \cdot O(2^{i}) = 1.89 \text{ Å}]$ [symmetry code: (i) $\frac{1}{2} - x$, 1 - y, $z - \frac{1}{2}$]. In (2), the intramolecular N(1)—H(1)···O(1) hydrogen-bonding distance is 2.753 (5) Å $[H(1) \cdots O(1) = 2.02 Å]$ while the intermolecular $O(1) \cdots O(2^{ii})$ hydrogen-bonding distance is 2.701 (5) Å [symmetry code: (ii) $\frac{2}{3} - y$, $-\frac{2}{3} + x - y$,

Fig. 1. Molecular structure of compound (1) with the atomic labeling scheme and drawn with displacement ellipsoids at the 30% probability level.

Fig. 2. Molecular structure of compound (2) with the atomic labeling scheme and drawn with displacement ellipsoids at the 30% probability level.

Experimental

The δ -hydroxy- β -enamino ketones (1) and (2) were prepared by treatment of enamino ketone (1*a*) or (2*a*) [obtained by condensation of α -methylbenzylamine with either 2-benzoylcyclopentanone for (1*a*) or 5-phenyl-3,5-pentadione for (2*a*)] in tetrahydrofuran with 3 eq methyllithium in the presence of 3 eq hexamethylphosphoramide and heated from 273 to 303 K for 30 min (Bartoli *et al.*, 1992, 1993). These lithium dianions of (1*a*) and (2*a*) were then treated with 2.5 eq of acetone or pivaldehyde, respectively, at 173 K for 30 min. After quenching (H₂O/tetrahydrofuran, 223 K), chromatographic purification gave the enantiopure δ -hydroxy- β -enamino ketone (1) or (2) (Camalli *et al.*, 1997).

C23H27NO2 AND C24H31NO2.H2O

3 standard reflections

every 97 reflections

intensity decay: 4%

Compound (1)

Crystal data $C_{23}H_{27}NO_2$ $M_r = 349.47$ Orthorhombic $P2_{1}2_{1}2_{1}$ a = 10.802 (3) Åb = 12.896(8) Å c = 14.936(6) Å $V = 2080 (2) \text{ Å}^3$ Z = 4 $D_r = 1.116 \text{ Mg m}^{-3}$ D_m not measured

Data collection

```
Huber/CS diffractometer
\theta/2\theta scans
Absorption correction:
   \psi scan (North et al.,
   1968)
   T_{\rm min} = 0.84, T_{\rm max} = 1.00
3768 measured reflections
3391 independent reflections
1465 reflections with
   I > 3\sigma(I)
```

Refinement

```
Refinement on F
                                             (\Delta/\sigma)_{\rm max} = 0.05
                                             \Delta \rho_{\rm max} = 0.2 \ {\rm e} \ {\rm \AA}^{-3}
R = 0.058
                                             \Delta \rho_{\rm min} = -0.2 \ {\rm e} \ {\rm \AA}^{-3}
wR = 0.086
                                             Extinction correction: none
S = 1.178
                                             Scattering factors from
3390 reflections
                                                 International Tables for
235 parameters
H atoms rigid to parent C
                                                 X-ray Crystallography
                                                 (1974)

\begin{array}{l} \text{atom} \\ w = 1/[0.00025 + 0.05105F \\ \end{array}

      + 0.00085F^{2}]
```

Table 1. Selected	geometric parameters	(Å. °) for	r (1)
14010 11 5000000	geometric parameters	7	1.1	· · - ·	/

O(1)—C(2)	1.431 (3)	N(1)—C(4)	1.344 (4)
O(2)—C(6)	1.274 (4)	N(1)—C(13)	1.471 (5)
C(13) - N(1) - C(4) $C(1) - C(2) - O(1)$ $C(3) - C(2) - O(1)$ $C(3) - C(2) - C(1)$ $C(23) - C(2) - O(1)$	128.7 (3)	C(23)—C(2)—C(1)	111.8 (3)
	107.4 (2)	C(23)—C(2)—C(3)	113.8 (3)
	105.8 (2)	C(5)—C(6)—O(2)	121.4 (3)
	109.0 (3)	C(7)—C(6)—O(2)	116.7 (2)
	108.7 (3)	C(7)—C(6)—C(5)	121.9 (2)

Compound (2) Crystal data

$C_{24}H_{31}NO_2.H_2O$	Cu $K\alpha$ radiation
$M_r = 383.52$	$\lambda = 1.5418 \text{ Å}$
Trigonal	Cell parameters from 15
R3	reflections
a = 27.132 (5) Å	$\theta = 20-26^{\circ}$
c = 8.290 (4) Å	$\mu = 0.526 \text{ mm}^{-1}$
V = 5285 (3) Å ³	T = 296 K
Z = 9	Prism
$D_x = 1.084 \text{ Mg m}^{-3}$	$0.6 \times 0.4 \times 0.4$ mm
D_m not measured	Colorless

	Data collection		
Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 25 reflections $\theta = 3-12^{\circ}$ $\mu = 0.070 \text{ mm}^{-1}$ T = 296 K Drive	Rigaku AFC-5 diffractometer $\theta/2\theta$ scans Absorption correction: none 2114 measured reflections 1843 independent reflections 1699 reflections with $I > 2\sigma(I)$ $R_{int} = 0.056$	$\theta_{max} = 62^{\circ}$ $h = 0 \rightarrow 31$ $k = -26 \rightarrow 0$ $l = -9 \rightarrow 9$ 3 standard reflections every 97 reflections intensity decay: none	
$0.5 \times 0.4 \times 0.3 \text{ mm}$	Refinement		
Colorless	Refinement on F R = 0.055 wR = 0.074 S = 0.997	$(\Delta/\sigma)_{max} = 0.05$ $\Delta\rho_{max} = 0.2 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.2 \text{ e} \text{ Å}^{-3}$ Extinction correction: none	
$R_{int} = 0.084$ $\theta_{max} = 30^{\circ}$ $h = 0 \rightarrow 15$ $k = 0 \rightarrow 18$	1843 reflections 252 parameters H atoms rigid to parent atom $w = 1/[20.7883 + 0.0125F + 0.0026F^2]$	Scattering factors from International Tables for X-ray Crystallography (1974)	
$l = 0 \rightarrow 20$			

Table 2. Selected geometric parameters (Å, $^{\circ}$) for (2)

O(1)—C(2)	1.426 (8)	N(1)—C(4)	1.344 (8)
O(2)—C(6)	1.257 (7)	N(1)—C(13)	1.456 (6)
C(13) - N(1) - C(4) $C(1) - C(2) - O(1)$ $C(3) - C(2) - O(1)$ $C(3) - C(2) - C(1)$	125.6 (4) 110.1 (6) 111.3 (4) 117.4 (5)	C(5)—C(6)—O(2) C(7)—C(6)—O(2) C(7)—C(6)—C(5)	125.3 (5) 118.3 (6) 116.4 (4)

For (1), a goodness of fit of 1.178 was obtained from an optimization procedure included in the CAOS program system (Camalli & Spagna, 1994). The positions of the H atoms bonded to C atoms were calculated (C—H = 0.96 Å). The H atoms bonded to O and N atoms were localized from the final difference Fourier syntheses and refined with isotropic displacement parameters fixed to the corresponding values of the parent atom. For (2), the H atoms were placed in calculated positions (N-H, C-H = 0.96 Å). One H atom bonded to an O atom was not found in the final difference Fourier map and thus was not included.

Data collection: CS (Colapietro et al., 1992) for (1); MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (2). Cell refinement: CS for (1); MSC/AFC Diffractometer Control Software for (2). Data reduction: DARX (Barba & Pifferi, 1994) for (1); TEXSAN PROCESS (Molecular Structure Corporation, 1985) for (2). Program(s) used to solve structures: SIR92 (Altomare et al., 1994) for (1); SIR97 (Altomare et al., 1998) for (2). Program(s) used to refine structures: CAOS (Camalli & Spagna, 1994) for (1); SIR97 for (2). For both compounds, molecular graphics: CAOS.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1240). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1998). J. Appl. Cryst. In the press.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Barba, L. & Pifferi, A. (1994). Personal communication.

- Bartoli, G., Bosco, M., Cimarelli, C., Dalpozzo, R., De Munno, G. & Palmieri, G. (1993). *Tetrahedron Asymmetry*. 4, 1651-1665.
- Bartoli, G., Bosco, M., Cimarelli, C., Dalpozzo, R., Guerra, M. & Palmieri, G. (1992). J. Chem. Soc. Perkin. Trans. 2, pp. 649-655.
- Camalli, M., Cimarelli, C. & Palmieri, G. (1997). Tetrahedron Asymmetry, 53, 6893-6902.

Camalli, M. & Spagna, R. (1994). J. Appl. Cryst. 27, 861-862.

- Colapietro, M., Cappuccio, G., Marciante, C., Pifferi, A., Spagna, R. & Helliwell, J. R. (1992). J. Appl. Cryst. 25, 192–194.
- Denmark, S. E. & Ares, J. J. (1988). J. Am. Chem. Soc. 110, 4432-4434.
- Enders, D., Dyker, H. & Raabe, G. (1992). Angew. Chem. Int. Ed. Engl. pp. 618-620.

Franklin, A. S. & Paterson, L. (1994). Contemp. Org. Syn. 1, 317-338.

- Heathcock, C. H. (1991). Comprehensive Organic Synthesis, Vol. 2, edited by B. M. Trost & I. Fleming, pp. 133–179, 181–238, 475– 502. Oxford: Pergamon Press.
- Meyers, A. I., Williams, D. R., White, S. & Erickson, G. W. (1981). J. Am. Chem. Soc. 103, 3088–3093.
- Molecular Structure Corporation (1985). *TEXSAN. TEXRAY Structure Analysis Package.* MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1998). C54, 1309-1312

Triterpenoide. XIII.† Über weitere neue Triterpenlactone

Andrzej Gzella, Lucjusz Zaprutko und Urszula Wrzeciono

Lehrstuhl für Organische Chemie der K. Marcinkowski Universität der Medizinischen Wissenschaften Poznań, ul. Grunwaldzka 6, 60-780 Poznań, Polen. E-mail: akgzella@eucalyptus.usoms.poznan.pl

(Eingegangen am 30. Oktober 1997; angenommen am 27. Februar 1998)

Abstract

The two new triterpene lactones, 11α -hydroxy-28methoxy-28-oxo-2,3-dinor-18 β -olean-12-en-1,4-olide hydrate [C₂₉H₄₄O₅·H₂O, (5)] and 28-methoxy-28-oxo-1,2dinor-10 α ,18 β -oleano-9,12-dien-3,10 β -olide [C₂₉H₄₂O₄, (6)], were obtained according to the method of Zaprutko [*Pol. J. Chem.* (1995), **69**, 1003–1012]. In both compounds, the lactone bridge connects atoms C4 and C10. In (5), the carbonyl group of the lactone bridge is formed by C1 and O1, and in (6), by C3 and O2. In (5), the methyl group at C10 has a β and in (6) an α configuration. The A and B rings are *trans*-fused in (5), and *cis*-fused in (6). The bond lengths in ring C indicate double bonds between C12—C13 in (5) and C9—C11 and C12—C13 in (6). The hydroxyl group at C11 in (5) is α oriented. Ring B in (5) has a chair conformation and in (6) a distorted half-chair conformation. Ring C in (5) has a sofa conformation and in (6) a slightly distorted half-chair conformation. Rings D and E have a chair conformation in both compounds and are *cis*fused. The asymmetric unit of (5) contains one water molecule, disordered over two positions, making two alternative hydrogen bonds.

Kommentar

Die Einwirkung von einem 7,5-fachen Überschuß von Natriumdichromat in siedendem Eisessig auf Oleanolsäuremethylester (1) führt zu einem Gemisch von zumindest zwei Verbindungen. Bei der Strukturaufklärung des Hauptproduktes dieser Reaktion hat Zaprutko (1995) die Lactonstrukturen (2) und (3) in Betracht gezogen. Spektroskopische Untersuchungen (IR, MS, ¹H, ¹³C, ²D NMR) deuteten auf die Struktur (2) hin (Zaprutko, 1995). Inzwischen zeigte es sich aber, daß diese Verbindung mit einem der vier Oxidationsprodukte von 3β -Hydroxy-11-oxo-18 α -olean-12-en-28-säuremethylester identisch ist und somit die röntgenographisch aufgeklärte Struktur (4) besitzt (Gzella *et al.*, 1997).

Das zweite Oxidationsprodukt von (1) konnte bis dahin nicht isoliert werden. Reduziert man das rohe Oxidationsgemisch von (1) mit Zink in Eisessig nach dem von Zaprutko (1995) beschriebenen Verfahren,

[†] Teil XII: Zaprutko (1997).